首页 > 师资力量 > 智能材料与结构系

智能材料与结构系

周五星

终.png


一、基本资料

周五星,男,1987年8月出生,民革党员,教授,硕士生导师,湖南省青年科技人才(荷尖),雨湖区政协委员,湖南科技大学beat365手机版官方网站正规副院长。主要从事半导体材料中的电子输运、热输运以及热电转换性质研究。目前主持完成国家自然科学青年基金项目1项,主持在研国家自然基金面上项目1项,在Advanced Functional Materials, Journal of Materials Chemistry A, Physical Review Applied, Applied Physics Letters等国际知名期刊上发表SCI论文80余篇,SCI引用2000多次。

Email:wuxingzhou@hnu.edu.cn

二、教育和研究经历

2018年8月——至今 湖南科技大学beat365手机版官方网站正规

2016年12月——2017年12月 博士后 新加坡国立大学先进二维材料和石墨烯研究中心

2015年7月——2018年7月 助理研究员 湖南大学 物理与微电子科学学院

2010年9月——2015年6月 硕博连读 湖南大学 物理与微电子科学学院 物理学

2006年9月——2010年6月 本科 湖南大学 物理与微电子科学学院 应用物理学

三、研究方向

1. 纳米尺度热输运

2. 纳米电子学

3. 热电材料设计

四、主持国家自然科学基金项目

1. 湖南省青年科技创新人才(荷尖),直接经费:40万,项目起止年月:2023年7月——2026年7月。(在研)

2. 国家自然科学基金面上项目:全固态锂电池电极材料及界面热输运微观机理与性能调控,直接费用:62万,项目起止年月:2021年1月——2024年12月。(在研)

3. 国家自然科学青年基金:半导体纳米尺度热信息器件计算设计及声子调控,直接费用:22万,项目起止年月:2017年1月——2019年12月。(已结题)

五、发表学术论文

[1] X-K Chen, Y Zhang, QQ Luo, X Chen, PZ Jia*, Wu-Xing Zhou*, Large contributions from optical phonons to thermal transport in hexagonal carbon-boron-nitrogen monolayers, Physical Review B 108 (23), 235420 (2023).

[2] A Chen, H Tong, CW Wu, SY Li, PZ Jia*, Wu-Xing Zhou*, First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer, Physical Chemistry Chemical Physics 26 (1), 421-429 (2024).

[3] Cheng-Wei Wu, Fan Li, Yu-Jia Zeng, Hongwei Zhao, Guofeng Xie, Wu-Xing Zhou,* Q Liu,* G Zhang,* Machine learning accelerated design of 2D covalent organic frame materials for thermoelectrics, Applied Surface Science, 157947 (2023), DOI: 10.1016/j.apsusc.2023.157947.

[4] Shi-Yi Li, Cheng-Wei Wu, Long-Ting Liu, Hui-Ling Kuang, Yu-Jia Zeng, Dan Wu, G Xie, WX Zhou, Machine learning-assisted investigation of the impact of lithium-ion de-embedding on the thermal conductivity of LiFePO4, Applied Physics Letters 122, 262201 (2023).

[5] Xue Ren, Cheng-Wei Wu, Shi-Yi Li, Zhong-Xiang Xie*, Wu-Xing Zhou*,Tuning interfacial thermal conductance of GaN/AlN heterogeneous nanowires by constructing core/shell structure, Journal of Physics: Condensed Matter 35 (11), 115302 (2023).

[6] Cheng-Wei Wu, Hui Pan, Yu-Jia Zeng, Wu-Xing Zhou*, Ke-Qiu Chen*, Gang Zhang*Nano phononic metamaterials Enables Anomalous Enhancement in Interfacial Thermal Conductance of GaN/AlN Heterojunction, Nanoscale 15, 6732-6737 (2023).

[7] Ao Chen, Hua Tong, Cheng-Wei Wu, Guofeng Xie, Zhong-Xiang Xie*, Chang-Qing Xiang*, Wu-Xing Zhou*, Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries, Chinese Physics B 32, 058201 (2023).

[8] Pin-Zhen Jia, Jia-Ping Xie, Xue-Kun Chen, Yong Zhang, Xia Yu, Yu-Jia Zeng, Zhong-Xiang Xie*, Yuan-Xiang Deng*, Wu-Xing Zhou*, Recent progress of two-dimensional heterostructures for thermoelectric applications, Journal of Physics: Condensed Matter 35 (7), 073001 (2022).

[9] Cheng-Wei Wu, Xue Ren, Shi-Yi Li, Yu-Jia Zeng, Wu-Xing Zhou*,Guofeng Xie*, Significant regulation of stress on the contribution of optical phonons to thermal conductivity in layered Li2ZrCl6: First-principles calculations combined with the machine-learning potential approach, Applied Physics Letters 121 (17), 172201 (2022).

[10] Xue-Kun Chen, Jia-Ling Tan, Min Pang, Zhong-Xiang Xie*, Wu-Xing Zhou*, Jun Liu*, Interlayer coupling-induced controllable negative differential thermal resistance in graphene/h-BN van der Waals heterostructure, Applied Physics Letters 121 (14), 142203 (2022).

[11] Pin-Zhen Jia, Zhong-Xiang Xie, Yuan-Xiang Deng, Yong Zhang, Li-Ming Tang, Wu-Xing Zhou*, Ke-Qiu Chen*, High thermoelectric performance induced by strong anharmonic effects in monolayer (PbX)2(X=S, Se, Te), Applied Physics Letters 121 (4), 043901 (2022).

[12] Cheng-Wei Wu, Xue Ren, Guofeng Xie, Wu-Xing Zhou*, Gang Zhang*, Ke-Qiu Chen*, Enhanced High-Temperature Thermoelectric Performance by Strain Engineering in BiOCl, Physical Review Applied 18 (1), 014053 (2022).

[13] Yan Gan, Chen-Wei Wu, Zhong-Xiang Xie*, Yuan-Xiang Deng, Yong Zhang, Wu-Xing Zhou*, Xue-Kun Chen*, Excellent Medium-Temperature Thermoelectric Performance of Monolayer BiOCl, Langmuir 38 (25), 7733-7739 (2022).

[14] Cheng-Wei Wu, Xue Ren, Wu-Xing Zhou*, Guofeng Xie, Gang Zhang*, Thermal stability and thermal conductivity of solid electrolytes, APL Materials 10 (4), 040902 (2022).

[15] Cheng-Wei Wu, Wu-Xing Zhou*, Guofeng Xie, Xue-Kun Chen, Dan Wu*, Zhi-Qiang Fan, Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance, Nanotechnology 33 (21), 215402 (2022).

[16] Changqing Xiang, Cheng-Wei Wu, Wu-Xing Zhou*, Guofeng Xie*, Gang Zhang*, Thermal transport in lithium-ion battery: A micro perspective for thermal management, Frontiers of Physics 17, 1-11 (2022).

[17] 吴成伟, 任雪, 周五星*, 谢国锋, 多孔石墨烯纳米带各向异性和超低热导的理论研究, 物理学报 (2022).

[18] Yu-Jia Zeng, Yue-Yang Liu, Hui Pan, Zhong-Ke Ding, Wu-Xing Zhou, Li-Ming Tang, Baowen Li, Ke-Qiu Chen*, Thermoelectric Conversion From Interface Thermophoresis and Piezoelectric Effects, Frontiers in Physics, 152 (2022).

[19] 吴成伟, 谢国锋*, 周五星*, 全固态锂离子电池内部热输运研究前沿, 物理学报 (2022).

[20] Xuan-Hao Cao, Dan Wu, Jiang Zeng, Nan-Nan Luo, Wu-Xing Zhou, Li-Ming Tang*, Ke-Qiu Chen*, Controllable anisotropic thermoelectric properties in 2D covalent organic radical frameworks, Applied Physics Letters 119 (26), 263901 (2021).

[21] Hai-Qing Xie, Dan Wu, Xiao-Qing Deng, Zhi-Qiang Fan*, Wu-Xing Zhou, Chang-Qing Xiang, Yue-Yang Liu, Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application, Chinese Physics B 30 (11), 117102 (2021).

[22] Bin Ding, Xiaoyan Li, Wu-Xing Zhou, Gang Zhang*, Huajian Gao*, Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene, National science review 8 (9), nwaa220 (2021).

[23] Dan Wu, Lin Huang, Pin-Zhen Jia, Xuan-Hao Cao, Zhi-Qiang Fan, Wu-Xing Zhou*, Ke-Qiu Chen*, Tunable spin electronic and thermoelectric properties in twisted trianguleneπ-dimer junctions, Applied Physics Letters 119 (6), 063503 (2021).

[24] Hengyu Yang, Guofeng Xie*, Xue-Liang Zhu, Wu-Xing Zhou, Ning Xu*, First-Principles Calculations on Thermoelectric Properties of Layered Transition Metal Phosphides MP2(M = Ni, Pd, Pt), Journal of Electronic Materials 50, 2510-2520 (2021).

[25] Cheng-Wei Wu, Changqing Xiang, Hengyu Yang, Wu-Xing Zhou*, Guofeng Xie, Baoli Ou, Dan Wu*, Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms, Chinese Physics B 30 (3), 037304 (2021).

[26] Ke Wang, WuXing Zhou, Yuan Cheng, Min Zhang, Hai Wang*, Gang Zhang*, Magnetic order-dependent phonon properties in 2D magnet CrI 3, Nanoscale 13 (24), 10882-10890 (2021).

[27] Pin-Zhen Jia, Dan Wu, Qian-Qian Zhang, Wu-Xing Zhou*, Zhi-Qiang Fan, Ye-Xin Feng, Li-Ming Tang, Ke-Qiu Chen*, Design of Thermal Metamaterials with Excellent Thermal Control Functions by Using Functional Nanoporous Graphene, physica status solidi (RRL)–Rapid Research Letters 14 (10), 2000333 (2020).

[28] A Suwardi, J Cao, Y Zhao, J Wu, SW Chien, XY Tan, L Hu, X Wang, W Wang, D Li, Y Yin, W-X Zhou, DVM Repaka, J Chen, Y Zheng, Q Yan, G Zhang*, J Xu*, Achieving high thermoelectric quality factor toward high figure of merit in GeTe, Materials Today Physics 14, 100239 (2020).

[29] Ya-Nan Peng, Ji-Feng Yu, Xuan-Hao Cao, Dan Wu, Pin-Zhen Jia, Wu-Xing Zhou*, Ke-Qiu Chen*, An efficient mechanism for enhancing the thermoelectricity of twin graphene nanoribbons by introducing defects, Physica E: Low-dimensional Systems and Nanostructures 122, 114160 (2020).

[30] Xue-Liang Zhu, Hengyu Yang, Wu-Xing Zhou, Baotian Wang*, Ning Xu*, Guofeng Xie*, KAgX (X= S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications, ACS Applied Materials & Interfaces 12 (32), 36102-36109 (2020).

[31] Heng-Yu Yang, Ya-Li Chen, Wu-Xing Zhou, Guo-Feng Xie*, Ning Xu*, Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering, Chinese Physics B 29 (8), 086502 (2020).

[32] Qian-Qian Zhang, Pin-Zhen Jia, Xue-Kun Chen, Wu-Xing Zhou*, Ke-Qiu Chen*, Thermal transport properties in monolayer group-IV binary compounds, Journal of Physics: Condensed Matter 32 (30), 305301 (2020).

[33] Zhong-Xiang Xie*, Xia Yu, Xue-Kun Chen, Wu-Xing Zhou, Yi-Min Shi, Li-Fu Zhang*, Modulation of thermal transport in AlxGa1xAs alloy nanowires with varying compositions, Applied Physics Letters 116 (14), 143102 (2020).

[34] Wu-Xing Zhou, Dan Wu, Guofeng Xie, Ke-Qiu Chen*, Gang Zhang*, α-Ag2S: A Ductile Thermoelectric Material with HighZT, ACS omega 5 (11), 5796-5804 (2020).

[35] Wu‐Xing Zhou, Yuan Cheng, Ke‐Qiu Chen, Guofeng Xie*, Tian Wang*, Gang Zhang*,Thermal Conductivity of Amorphous Materials, Advanced Functional Materials 30 (8), 1903829 (2020).

[36] Yu‐Jia Zeng, Dan Wu, Xuan‐Hao Cao, Wu‐Xing Zhou, Li‐Ming Tang, Ke‐Qiu Chen*, Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies, Advanced Functional Materials 30 (8), 1903873 (2020).

[37] Yunshan Zhao, Xiangjun Liu, Ashutosh Rath, Jing Wu, Baowen Li, Wu-Xing Zhou, Guofeng Xie, Gang Zhang*, John TL Thong*, Probing thermal transport across amorphous region embedded in a single crystalline silicon nanowire, Scientific Reports 10 (1), 1-8 (2020).

[38] Heng-Yu Yang, Ya-Li Chen, WuXing Zhou, Guofeng  Xie*, Ning Xu*, Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering[J], Chinese Physics, 29 (8), 102-107 (2020).

[39] Ady Suwardi, Jing Cao, Lei Hu, Fengxia Wei, Jing Wu, Yunshan Zhao, Su Hui Lim, Lan Yang, Xian Yi Tan, Sheau Wei Chien, Yan Yin, Wu-Xing Zhou, Wong Lai Mun Nancy, Xizu Wang, Suo Hon Lim, Xiping Ni, Dengfeng Li, Qingyu Yan, Yun Zheng, Gang Zhang*, Jianwei Xu*, Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics, Journal of Materials Chemistry A 8 (36), 18880-18890 (2020).

[40] Wu Dan, Xuan-Hao Cao, Pin-Zhen Jia, Yu-Jia Zeng, Li-Ming Tang, Wu-Xing Zhou*, Ke-Qiu Chen*, Excellent thermoelectric performance in weak-coupling molecular junctions with electrode doping and electrochemical gating, SCIENCE CHINA Physics, Mechanics & Astronomy 63,276811 (2020).

[41] Pin-Zhen Jia, Yu-Jia Zeng, Dan Wu, Hui Pan, Xuan-Hao Cao, Wu-Xing Zhou*, Zhong-Xiang Xie, Ji-Xu Zhang, Ke-Qiu Chen*, Excellent thermoelectric performance induced by interface effect in MoS2/MoSe2 van der Waals heterostructure, Journal of Physics: Condensed Matter 32 (5), 055302 (2019).

[42] Liang-Po Tang, Qian-Ze Li, Cai-Xin Zhang, Feng Ning, Wu-Xing Zhou, Li-Ming Tang*, Ke-Qiu Chen, Prediction of intrinsic ferromagnetism in two-dimension planar metal-organic framework semiconductors, Journal of Magnetism and Magnetic Materials 488, 165354 (2019).

[43] Zhong-Xiang Xie, Yong Zhang, Xue-Kun Chen, Wu-Xing Zhou*, Guo-Jun Yi, Yi-Min Shi, Ji-Xu Zhang, Li-Fu Zhang*, Phonon transport in periodically and quasi-periodically modulated cylindrical nanowires, Journal of Physics: Condensed Matter 31 (50), 505303 (2019).

[44] Xuan-Hao Cao, Dan Wu, Ye-Xin Feng, Wu-Xing Zhou*, Li-Ming Tang, Ke-Qiu Chen*, Effect of electrophilic substitution and destructive quantum interference on the thermoelectric performance in molecular devices, Journal of Physics: Condensed Matter 31 (34), 345303 (2019).

[45] Xue-Liang Zhu, Peng-Fei Liu, Guofeng Xie*, Wu-Xing Zhou, Bao-Tian Wang, Gang Zhang*, Thermoelectric Properties of Hexagonal M2C3 (M= As, Sb, and Bi) Monolayers from First-Principles Calculations, Nanomaterials 9 (4), 597 (2019).

[46] Xue-Liang Zhu, Peng-Fei Liu, Junrong Zhang, Ping Zhang, Wu-Xing Zhou, Guofeng Xie*, Bao-Tian Wang*, Monolayer SnP 3: an excellent p-type thermoelectric material, Nanoscale 11 (42), 19923-19932 (2019).

[47] Shi-Zhang Chen, Yuan-Xiang Deng, Xuan-Hao Cao, Wu-Xing Zhou*, Ye-Xin Feng, Li-Ming Tang, Ke-Qiu Chen*, Exploring high-performance anodes of Li-ion batteries based on the rules of pore-size dependent band gaps in porous carbon foams, Journal of Materials Chemistry A 7 (38), 21976-21984 (2019).

[48] Dan Wu, Xuan-Hao Cao, Shi-Zhang Chen, Li-Ming Tang, Ye-Xin Feng, Ke-Qiu Chen*, Wu-Xing Zhou*, Pure spin current generated in thermally driven molecular magnetic junctions: a promising mechanism for thermoelectric conversion, Journal of Materials Chemistry A 7 (32), 19037-19044 (2019).

[49] Yuan-Xiang Deng, Shi-Zhang Chen, Yun Zeng, Yexin Feng, Wu-Xing Zhou*, Li-Ming Tang*, Ke-Qiu Chen*, Spin gapless semiconductor and half-metal properties in magnetic penta-hexa-graphene nanotubes, Organic Electronics 63, 310-317 (2018).

[50] Yunqiu He, Si-Qin Wang, Xiong-Xiong Xue, Lixin Zhang, Ke-Qiu Chen, Wu-Xing Zhou*, Yexin Feng*, Ab initio study of the moisture stability of lead iodine perovskites, Journal of Physics: Condensed Matter 30 (35), 355501 (2018).

[51] Shi-Zhang Chen, Wu-Xing Zhou, Ji-Feng Yu, Ke-Qiu Chen*, Nanoporous carbon foam structures with excellent electronic properties predicted by first-principles studies, Carbon 129, 809-818 (2018).

[52] Yu-Jia Zeng, Yue-Yang Liu, Wu-Xing Zhou*, Ke-Qiu Chen*, Nanoscale thermal transport: Theoretical method and application, Chinese Physics B 27 (3), 036304 (2018).

[53] Yuan-Xiang Deng, Shi-Zhang Chen, Yun Zeng*, Wu-Xing Zhou*, Ke-Qiu Chen*, Large spin rectifying and high-efficiency spin-filtering in superior molecular junction, Organic Electronics 50, 184-190 (2017).

[54] Xuan-Hao Cao, Wu-Xing Zhou*, Chang-Yong Chen*, Li-Ming Tang, Mengqiu Long, Ke-Qiu Chen*, Excellent thermoelectric properties induced by different contact geometries in phenalenyl-based single-molecule devices, Scientific Reports 7 (1), 10842 (2017).

[55] Le Xie, Shi-Zhang Chen, Wu-Xing Zhou, Ke-Qiu Chen*, Large rectifying ratio in a nitrogen-doped armchair graphene device modulated by the gate voltage, Organic Electronics 46, 150-157 (2017).

[56] Ting Tan, Shi-Zhang Chen, Xuan-Hao Cao, Wu-Xing Zhou*, Fang Xie*, Ke-Qiu Chen*, Large anisotropic thermal conductivity and excellent thermoelectric properties observed in carbon foam, Journal of Applied Physics 122 (2), 024304 (2017).

[57] Peng-Yu Xiong, Shi-Zhang Chen, Wu-Xing Zhou, Ke-Qiu Chen*, Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons, Physics Letters A 381 (24), 2016-2020 (2017).

[58] Yan Wang†, Wu-Xing Zhou†, Le Huang, Congxin Xia, Li-Ming Tang, Hui-Xiong Deng, Yongtao Li, Ke-Qiu Chen*, Jingbo Li*, Zhongming Wei*, Light induced double onstate anti-ambipolar behavior and self-driven photoswitching in p-WSe2/n-SnS2 heterostructures, 2D Materials 4 (2), 025097 (2017).

[59] Shi-Zhang Chen, Fang Xie, Feng Ning, Yue-Yang Liu, Wu-Xing Zhou, Ji-Feng Yu, Ke-Qiu Chen*, Breaking surface states causes transformation from metallic to semi-conducting behavior in carbon foam nanowires, Carbon 111, 867-877 (2017).

[60] Jue Wang, Fang Xie, Xuan-Hao Cao, Si-Cong An, Wu-Xing Zhou*, Li-Ming Tang*, Ke-Qiu Chen*, Excellent Thermoelectric Properties in monolayer WSe 2 Nanoribbons due to Ultralow Phonon Thermal Conductivity, Scientific reports 7 (1), 1-8 (2017).

[61] Yue-Yang Liu, Bo-Lin Li, Wu-Xing Zhou, Ke-Qiu Chen*, Triggering piezoelectricity directly by heat to produce alternating electric voltage, Applied Physics Letters 109 (11), 113107 (2016).

[62] Xue-Kun Chen, Zhong-Xiang Xie, Wu-Xing Zhou, Li-Ming Tang, Ke-Qiu Chen*, Phonon wave interference in graphene and boron nitride superlattice, Applied Physics Letters 109 (2), 023101 (2016).

[63] Xue Zhang, Wu-Xing Zhou*, Xue-Kun Chen, Yue-Yang Liu, Ke-Qiu Chen*, Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall van der Waals interactions, Physics Letters A 380 (21), 1861-1864 (2016).

[64] Xue-Kun Chen, Zhong-Xiang Xie, Wu-Xing Zhou, Li-Ming Tang, Ke-Qiu Chen*, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon 100, 492-500 (2016).

[65] Xue-Kun Chen, Zhong-Xiang Xie, Wu-Xing Zhou, Ke-Qiu Chen*, The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain, Journal of Physics D: Applied Physics 49 (11), 115301 (2016).

[66] Yue-Yang Liu, Wu-Xing Zhou, Ke-Qiu Chen*, Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation, Scientific reports 5 (1), 17525 (2015).

[67] Wu-Xing Zhou, Ke-Qiu Chen*, First-principles determination of ultralow thermal conductivity of monolayer WSe2, Scientific reports 5 (1), 1-8 (2015).

[68] Wu-Xing Zhou, Ke-Qiu Chen*, Enhancement of thermoelectric performance in β-graphyne nanoribbons by suppressing phononic thermal conductance, Carbon 85, 24-27 (2015).

[69] Wu-Xing Zhou, Ke-Qiu Chen, Enhancement of thermoelectric performance by reducing phonon thermal conductance in multiple core-shell nanowires, Scientific reports 4, 7150 (2014).

[70] Yue-Yang Liu, Wu-Xing Zhou, Li-Ming Tang, Ke-Qiu Chen*, An important mechanism for thermal rectification in graded nanowires, Applied Physics Letters 105 (20), 203111 (2014).

[71] Jun Peng, Wu-Xing Zhou, Ke-Qiu Chen*, High-efficiency spin filtering in salophen-based molecular junctions modulated with different transition metal atoms, Physics Letters A 378 (42), 3126-3130 (2014).

[72] Xiao-Fang Peng*, Xin-Jun Wang, Li-Qun Chen, Jian-Bo Li, Wu-Xing Zhou, Gui Zhang*, Ke-Qiu Chen*, Thermal conductance associated with six types of vibration modes in quantum wire modulated with quantum dot, Physics Letters A 378 (30-31), 2195-2200 (2014).

[73] Wu-Xing Zhou, Shihua Tan, Ke-Qiu Chen*, Wenping Hu, Enhancement of thermoelectric performance in InAs nanotubes by tuning quantum confinement effect, Journal of Applied Physics 115 (12), 124308 (2014).

[74] Huahu Ying, Wu-Xing Zhou, Ke-Qiu Chen*, Guanghui Zhou, Negative differential resistance induced by the JahnTeller effect in single molecular coulomb blockade devices, Computational Materials Science 82, 33-36 (2014).

[75] Yue-Yang Liu, Wu-Xing Zhou, Li-Ming Tang, Ke-Qiu Chen*, Core-shell nanowire serves as heat cable, Applied Physics Letters 103 (26), 263118 (2013).

[76] Wu-Xing Zhou, Ke-Qiu Chen*, Li-Ming Tang, Ling-Jiang Yao, Phonon thermal transport in InAs nanowires with different size and growth directions, Physics Letters A 377 (43), 3144-3147 (2013).

六、育人成效

[1] 指导18级本科生甘艳在美国化学会经典期刊《Langmuir》(中科院分区:2区TOP)上发表SCI论文;

[2] 指导19级本科生陈奥、童话在《Physical Chemistry Chemical Physics》、《Chin. Phys. B》上发表SCI论文;

[3] 指导研究生吴成伟的硕士学位论文被评为校级优秀学位论文;


Baidu
sogou
Baidu
sogou